第7章 計画の目標を達成するために必要な事項

1 計画の目標を達成するための導入メニュー

計画の目標を達成するため、以下の21項目の導入メニューの実現を図ります。

【将来目標】 都市の集約化と環境にやさしい移動手段による 持続可能なまちづくり 導入メニューの方向性 導入メニュー ◆基本方針1:集約型都市構造への転換 1) 集約拠点地区での必要な都市機能や複合施設の誘導 2)集約拠点地区での集約駐車施設の整備 ①都市機能の集約化 3) 集約拠点地区への居住の誘導 ②子育て世代や高齢者等 4)子育て世代や高齢者等が必要とするサービスの提供 への配慮 5)多世帯・多世代居住への誘導 ◆基本方針2:環境にやさしい移動手段の利用促進 6)公共交通の柔軟な運行 ③公共交通の利用促進 7)バス案内システムの構築 8)市内事業者との自動車交通調整9)カーシェアリング等の導入 ④自動車交通需要の調整 10)環境に配慮した自動車利用の促進 11)道路の走行環境の改善 12) 都市計画道路の整備促進 ⑤道路環境の改善 13) 自転車利用環境の改善 ◆基本方針3:エネルギー消費量の削減 14)建物性能の向上 ⑥エネルギー負荷の軽減 15)エネルギーマネジメントシステムの導入促進 16) L E D 照明の導入 ⑦未利用・再生可能エネ 17)太陽光発電,廃熱利用等の活用促進 ルギーの活用 ◆基本方針4:緑豊かなまちづくりの推進 18)市民との協働による維持管理 ⑧緑の管理・育成 19)地区計画、ガイドライン等による緑の担保 20) 道路等の公共空間での緑化の推進 9緑化の推進 21)屋上,壁面,建物周りの緑化の推進

図 7-1 導入メニュー

2 導入メニューの取り組み内容

(1) 集約型都市構造への転換

導入メニュー	計画区域	集約拠点地区		
①都市機能の集	①都市機能の集約化			
1)	_	・集約拠点地区において必要な都市機能を		
集約拠点地区		誘導することで本市の拠点を形成し、集		
での必要な都		約型都市構造への転換を図ります。		
市機能や複合		・身近な買い物ができる店舗,飲食店,医		
施設の誘導		療施設、介護・福祉施設、保育施設、集		
		合住宅などの都市機能を誘致すること		
		で、利便性の向上を図ります。		
		・国の制度等の活用により、民間事業者に		
		よる都市機能の整備に対する支援を行い		
		ます。		
2)	_	・集約拠点地区において、駐車場需要を満		
集約拠点地区		たす規模の集約駐車施設を整備し,土地		
での集約駐車		の高度利用を推進し、集約型都市構造へ		
施設の整備		の転換を図ります。		
		・市有地などの複合利用を誘導し、集約駐		
		車施設を併設することで,駐車需要と都		
		市機能の集積の両立を図ります。		
		・土地の高度利用を誘導し、都市機能の集		
		積に必要な受け皿を創出します。		
3)	_	・集約拠点地区への居住の誘導を推進し、		
集約拠点地区		集約型都市構造への転換を図ります。		
への居住の誘		・市内から集約拠点地区内への住み替え支		
導		援等により、居住メリットを明確にしま		
		す。		
		・集約拠点地区への共同住宅等の立地を誘		
		導します。		

導入メニュー	計画区域 集約拠点地区	
②子育て世代や	高齢者等への配慮	
4)	・副次拠点や生活拠点	・子育て世代や高齢者等が必要とするソフ
子育て世代や	において, 身近な買い	ト・ハードの両面でのサービスの提供に
高齢者等が必	物ができる店舗, 飲食	より、集約拠点地区への居住を誘導し、
要とするサー	店、医療、介護・福祉	集約型都市構造への転換を図ります。
ビスの提供	施設, 保育施設などの	・医療,介護・福祉施設,保育所等の身近
	都市機能の維持・向上	な生活サービス機能を集約整備すること
	を図ります。	で、利便性の向上を図ります。
		・集約拠点でも公共サービスを提供するこ
		とで、公共サービスを受けるための市民
		の移動距離の軽減を図り、自動車等の利
		用に伴う CO_2 の排出量の抑制を図ります。
5)	_	・民間事業者の住宅整備にあたり、多世
多世帯・多世		帯・多世代居住が可能な住宅タイプの導
代居住への誘		入を要請することにより,集約拠点地区
導		への居住を誘導し,集約型都市構造への
		転換を図ります。

(2) 環境にやさしい移動手段の利用促進

導入メニュー	計画区域	集約拠点地区	
③公共交通の利用促進			
6) 公共交通の柔 軟な運行	・現在の循環型のバス路線の運行に加え、通勤・通学の利便性の高い柔軟な運行を実施し、公共交通機関の利用促進を図ります。 ・人が集う生活利便施設とバス運行との連携を強化し、バスでのアクセス性を高めます。 ・公共交通の利用促進に寄与する	・守谷駅を終着点としたバス路線について,通勤・通学の利便性の高い柔軟な運行を実施し,公共交通機関の利用促進を図ります。	
7) バス案内シス テムの構築	鉄道・バスの料金体系を検討します。 ・ITを活用したバスロケーションシステム*の導入や、わかりやすいバスの案内標識の設置により、バス利用の向上を図ります。	・守谷駅のバス停にわかりやす いバスの案内標識を設置し、 バス路線を把握していない市 民や不慣れな来訪者でも利用 しやすくし、バス利用率の向 上を図ります。	
④自動車交通需	要の調整		
8) 市内事業者と の自動車交通 調整	・市内事業所と連携し、交通結節点から事業所までの送迎バスの運行や、時差出勤、フレックスタイム導入等による渋滞緩和を図ります。 ・相乗り等により従業者の自動車通勤の削減を図ります。	_	

※バスロケーションシステム

GPS等を用いてバスの位置情報を収集し、バス停の表示板や携帯電話、パソコンにバス 到着時刻等の情報を提供するシステムのこと。

導入メニュー	計画区域	集約拠点地区
9)	・交通結節点や住宅地などでカー	・守谷駅前にカーシェアリング
カーシェアリ	シェアリングや自転車シェアリ	や自転車シェアリングを導入
ング等の導入	ング等を導入し, 家庭での自動車	すること等により、自動車や
	保有台数の削減や自動車走行距	駐車場を所有しないで暮らせ
	離の削減による, CO_2 の削減を図	る生活環境を整備します。
	ります。	
10)	・環境にやさしい移動手段として、	・環境にやさしい移動手段とし
環境に配慮し	環境対応車の普及促進を図りま	て,環境対応車の普及促進を
た自動車利用	す。	図ります。
の促進	・公用車の更新にあたっては、環境	
	対応車を選択します。	
⑤道路環境の改	E	
11)	・通勤・通学時間帯のバス専用レー	_
道路の走行環	ンの検討や, 交差点部等の改善等	
境の改善	により, 交通渋滞の解消を図りま	
	す。	
12)	・未整備の都市計画道路((都) 北園	・未整備の都市計画道路の整備
都市計画道路	野木崎線,(都)みずき野大日線,	により、広域幹線道路とラダ
の整備促進	(都) 坂町清水線,(都) 西口大柏	ー状のネットワークを構築
	線)の整備において,安心・健康・	し、集約拠点地区へのアクセ
	省エネを考慮し、ユニバーサルデ	ス性の向上と回遊性の向上を
	ザインにも配慮した道路整備を行	図ることで,自動車の走行環
	うことで、自転車や徒歩で暮らせ	境の改善を図ります。
	るまちづくりを実現します。	
13)	・駐輪場の整備や、自転車レーンの	・守谷駅への乗換えが容易な場
自転車利用環	設置などの自転車ネットワーク	所に、駐輪場を配置すること
境の改善	の整備により,自転車利用の促進	で現状の駐輪台数の不足を解
	を図ります。	消し、守谷駅へのアクセス手
		段を自動車から自転車へ転換
		を図ります。
		・既整備の都市計画道路やその
		他集約拠点地区内の道路の自
		転車歩行者道への改修を推進
		し、守谷市内全域から守谷駅
		への自転車によるアクセス性
		の向上を図ります。

(3) エネルギー消費量の削減

導入メニュー	計画区域	集約拠点地区
⑥エネルギー負荷	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	
14)	・建物の新築や建替えの機会を	・集約拠点地区での建物の新築や
建物性能の向	活用し、認定低炭素住宅等の	建替にあたっては、低炭素建築物
上	導入に向けて, 国の補助制度	認定制度の普及促進を図り、省エ
	や税の優遇措置等に関する情	ネ性能の高い建物の建設を誘導
	報提供を行い,建物性能の向	します。
	上によるエネルギー負荷の軽	・コージェネレーションシステム
	減を図ります。	等の高効率機器の導入に向けて
	・コージェネレーションシス	情報提供を行い, エネルギーの利
	テム*等の高効率機器の導入	用効率の向上を図ります。
	に向けて情報提供を行い, エ	・上記の取り組みを集約拠点地区
	ネルギーの利用効率の向上	において積極的に行い,市全域へ
	を図ります。	の普及を図ります。
15)	・面的整備を行う場所におい	・集約拠点地区での施設整備の機
エネルギーマ	て,スマートメーター等の [会を活用し、複数の建物や単体の
ネジメントシ	CT(情報通信技術)を用い	建物でのエネルギーマネジメン
ステムの導入	てエネルギーの管理・制御を	トシステムの導入により、エネル
促進	行う、エネルギーマネジメン	ギー利用の平準化と,地区内での
	トシステムの導入により、エ	電力利用の最小化を図ります。
	ネルギー負荷の軽減を図り	・集約拠点地区において積極的に
	ます。	取り組み、市全域への普及を図り
		ます。
16)	・公共施設や公共空間を中心	・集約拠点地区での施設整備の新
LED照明の	に既存の照明のLED照明	設や更新の機会を活用し、LED
導入	への変更、新設の照明でのL	照明の導入を図り、エネルギー負
	ED照明の導入を図り、エネ	荷の軽減を図ります。
	ルギー負荷の軽減を図りま	
	す。	

※コージェネレーションシステム

熱源から電力と熱を生産し、供給するシステムのこと。ガスタービンやディーゼルエンジンで発電し、その排熱を利用して給湯・空調などの熱需要をまかなう。

導入メニュー	計画区域	集約拠点地区
⑦未利用・再生	可能エネルギーの活用	
17)	・公共施設において、未利用・	・未利用エネルギー(ヒートポンプ
太陽光発電,	再生可能エネルギーの導入	**技術による廃熱利用等),再生可
廃熱利用等の	を図ります。また、建築物の	能エネルギー(太陽光発電や太陽
活用促進	新築・建替えの機会を活用	熱利用)の導入を積極的に図り,
	し、民間施設や住宅等での未	エネルギー消費量を軽減し CO ₂ 排
	利用・再生可能エネルギーの	出量を削減します。
	導入の普及促進を図ります。	

※ヒートポンプ

液体が気化する時に周りの熱を奪い、逆に液化する時には熱を発生する性質を応用して、 大気中の熱を冷却や加熱を行うシステムのこと。

ヒートポンプは、消費電力の約3倍以上の熱エネルギーを利用することができることから 効率がよく、また、CO₂を排出しないシステム。

家庭用では、ヒートポンプ式の給湯器「エコキュート」のほか、冷暖房機、洗濯乾燥機などがある。

(4) 緑豊かなまちづくりの推進

導入メニュー	計画区域	集約拠点地区
⑧緑の管理・育	或	
⑧緑の管理・育 18) 市民との協働による維持管理	・都では、 ・都では、 ・都でで、 ・で、 ・で、 ・で、 ・で、 ・で、 ・で、 ・で、	
	CO ₂ の吸収機能を強化します。	
19) 地区計画,ガイ ドライン等に よる緑の担保	・地区計画,ガイドライン等により,緑の質と量を担保し, CO_2 吸収機能を強化します。	・集約拠点地区の整備にあたり、地区 計画や緑化地域制度、ガイドライン 等により緑の質と量を担保するこ とで、緑による ${\rm CO_2}$ の吸収機能を強 化します。

※特定緑地管理機構

NPO法人や一般財団法人等が、緑地の保全や緑化を推進するため、都市緑地法の第68条に基づき、都道府県知事により指定された法人のこと。低炭素まちづくり計画を策定した市町村については、市町村長が指定できる。

導入メニュー	計画区域	集約拠点地区
9緑化の推進		
20) 道路等の公共 空間での緑化 の推進	・道路、公園及び公共施設周 りの緑化を推進し、CO ₂ 吸収 源の確保と、ヒートアイラ ンド化の抑制を図ります。	・集約拠点地区での公共施設の整備にあたっては、緑化を推進し、CO ₂ 吸収源の確保と、ヒートアイランド化の抑制を図ります。 ・集約拠点地区において積極的に取り組み、市全域への普及を図ります。
21) 屋上,壁面, 建物周りの緑 化の推進	・民間施設や住宅等において、建物や敷地内の緑化(敷地内への植栽や屋上緑化など)を推進し、CO ₂ 吸収源の確保と建物の熱負荷の軽減を図ります。	・集約拠点地区の整備にあたっては、建物や敷地内の緑化を推進し、CO ₂ 吸収源の確保と、建物の熱負荷の軽減を図ります。 ・集約拠点地区において積極的に取り組み、市全域への普及を図ります。

3 導入メニューの取り組み効果

(1) 導入メニューの取り組み効果について

 CO_2 の削減効果が直接的に発揮できる取り組みに着目し、それらの取り組みの効果を算定します。

基本方針1:集約型都市構造への転換

- ・集約拠点地区での集約駐車施設の整備(導入メニューの方向性①)。
- ・導入メニューの方向性②については、副次的な効果のため、各削減量の中(導入メニューの方向性⑥⑦)に含まれます。

基本方針2:環境にやさしい移動手段の利用促進

〇運輸部門

・公共交通の利用促進,自動車交通需要の調整,道路環境の改善による,自動車利用の抑制(導入メニューの方向性②③④⑤)。

基本方針3:エネルギー消費量の削減

〇業務部門

- ・事業用建物の省エネ建物の導入と、建替更新によるエネルギー負荷の軽減(導入メニューの方向性⑥)。
- ・事業用建物での未利用・再生可能エネルギーの導入(導入メニューの方向性⑦)。
- ・事業用建物の設備更新による未利用・再生可能エネルギーの導入 (導入メニューの方向性⑦)。

〇家庭部門

- ・新築住宅での省エネルギー住宅の導入と、建替更新によるエネルギー負荷の軽減(導入メニューの方向性⑥)。
- ・住宅での未利用・再生可能エネルギーの導入(導入メニューの方向性⑦)。

基本方針4:緑豊かなまちづくりの推進

〇緑分野

- ・緑地の保全と管理(導入メニューの方向性®)。
- ・緑化等の推進(導入メニューの方向性⑨)。

(2) 短期計画における本市の取り組み効果

表 7-1 平成 35 年における市街化区域の都市活動に起因する CO₂ 排出量の推計

単位:万t-CO₂/年

	低炭素まちづくり をしない場合	低炭素まちづくり をする場合	CO₂削減量	削減率
家庭部門	9.3	8.5	0.8	8.6%
業務部門	10.7	8.3	2.4	22.4%
運輸部門	12.6	10.5	2.1	16.6%
合 計	32.6	27.3	5.3	16.2%

表 7-2 平成 35 年における市街化区域の都市活動に起因する ${
m CO_2}$ 吸収量の推計

単位:万 t -CO₂/年

	低炭素まちづくり をしない場合	低炭素まちづくり をする場合
緑分野	0	-0.2 [*]

※CO2の吸収量のため、マイナスで表記している。

(3) 中期計画における本市の取り組み効果

表 7-3 平成 45 年における市街化区域の都市活動に起因する CO₂ 排出量の推計

単位:万 t -CO₂/年

	低炭素まちづくり をしない場合	低炭素まちづくり をする場合	CO₂削減量	削減率
家庭部門	10.1	7.8	2.3	22.7%
業務部門	12.7	6.0	6.7	52.7%
運輸部門	12.6	8.9	3.7	29.3%
合 計	35.4	22.7	12.7	35.8%

表 7-4 平成 45 年における市街化区域の都市活動に起因する CO₂ 吸収量の推計

単位:万 t -CO₂/年

	低炭素まちづくり をしない場合	低炭素まちづくり をする場合
緑分野	0	−0.7 [*]

※CO₂の吸収量のため、マイナスで表記している。

表 7-5 市街化区域の都市活動に起因する CO2 排出量及び CO2 吸収量の総括表

					CO ₂ 削源	成量,CO ₂ 吸	収量(t-CO	2/年)		
基本方針	導入メニューの方向性	導入メニュー		短期日	∃標		中期	目標(短期目標	票からの削減量	量)
本 半刀如	等八人一立 の方向性	ラスクーユ [・]		CO ₂ 削減量		CO2吸収量		CO ₂ 削減量		CO2吸収量
			業務部門	家庭部門	運輸部門	緑分野	業務部門	家庭部門	運輸部門	緑分野
◆基本方針1:	①都市機能の集約化	1)集約拠点地区での必要な都市機能や複合	14), 17) 13	:含まれる	6) ~13) に		14), 17) 1	こ含まれる	6) ~13) に	
集約型都市構		施設の誘導			含まれる				含まれる	
造への転換		2)集約拠点地区での集約駐車施設の整備			100					
		3)集約拠点地区への居住の誘導		果となるため、	他の項目に			果となるため、	他の項目に	
	②子育て世代や高齢者	4)子育て世代や高齢者等が必要とするサー	含まれる				含まれる			
	等への配慮	ビスの提供								
		5)多世帯・多世代居住への誘導		T.						
◆基本方針	③公共交通の利用促進	6)公共交通の柔軟な運行			21, 000				16, 000	
2:環境にやさ		7)バス案内システムの構築								
しい移動手段	④自動車交通需要の調	8)市内事業者との自動車交通調整								
の利用促進	整	9) カーシェアリング等の導入								
		10)環境に配慮した自動車(自家用車・公用								
		車)利用の促進								
	⑤道路環境の改善	11) 道路の走行環境の改善								
		12)都市計画道路の整備促進								
		13) 自転車利用環境の改善								
◆基本方針	⑥エネルギー負荷の軽	14) 建物性能の向上	10, 500	7,000			15, 200	5, 100		
3:エネルギー	減	15)エネルギーマネジメントシステムの導入	副次的な効果	ー 果となるため、	 他の項目に		副次的な効	ー 果となるため、	 他の項目に	
消費量の削減		促進	含まれる	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			含まれる	>, · = 0. • · = > (
		16)LED照明の導入	14) に含まれ	れる		•	14) に含ま	れる		=
	⑦未利用・再生可能エネ	17) 太陽光発電,廃熱利用等の活用促進	2,800				8, 200	1		
	ルギーの活用		11, 300	*			ŕ	,		
◆基本方針	⑧緑の管理・育成	18)市民との協働による維持管理				17				55
4:緑豊かなま										
ちづくりの推										
進		19) 地区計画,ガイドライン等による緑の担				2, 323				7, 261
		保								
	⑨緑化の推進	20) 道路等の公共空間での緑化の推進								
		21)屋上,壁面,建物周りの緑化の推進								
	CO ₂ 削減	は量の合計	24, 600	8, 400	21, 100		23, 400	7, 900	16,000	
	2		≑ 24, 000	≒ 8, 000	≒ 21, 000		≒ 23, 000	*	≒ 16, 000	
					53, 000				46, 000	
	CO ₂ 吸収	(量の合計				2, 340				7, 316
						≑ 2,000				≒ 7, 000

(4)取り組み効果の算出

基本方針1:集約型都市構造への転換による効果

表 7-6 集約駐車施設の整備における CO₂削減量

2	導入メニュー (業務部門)		①都市	機能	もの集約((短	比(集約 期目標	_	車施設の	を備)				
期待	される低炭素効果		区内の自動 区への都市		通量の削減 や公共公益が	を設の集積	責						
採用し	採用した算定式 CO2削減量 t-CO2/年 = 集約駐車 施設利用 台/年 × 平均移動 km × 原単位												
算定約		100	t-CO ₂ /年										
		122.4	t-CO ₂ /年	=	474,500	台/年	×	1.0	km	×	0.000258		
	集約駐車場台数	1,300 台											
E	想定平均回転数	1回/日											
原単位	稼動日数	365 日/年											
平均移動距離 1.0km													
	排出原単位 0.258kg-CO ₂ /台·km												

【算定式の内訳】

算定手法:低炭素まちづくり実践ハンドブック 資料編による

CO₂削減量=集約駐車施設利用台数(台/年)×集約拠点地区平均移動距離(km)

×自動車1台・1km あたりの排出量原単位(kg-CO₂/台・km)

=1,300 台/回×1 回/日×365 日/年×1km×0.258kg-CO₂/台·km

=122,421kg-CO₂/年

≒100t-CO₂/年

○集約駐車施設台数(台):1,300 台(現地調査による)

〇想定平均回転数:1回/日

〇平均移動距離(km):1kmと設定

○自動車 1 台・1km あたりの排出量原単位(kg-CO₂/台・km):0.258

基本方針2:環境にやさしい移動手段の利用促進による効果

〇運輸部門

表 7-7 運輸部門における CO₂削減量

導入メニュー (運輸部門)	③公共交通の利用促進 ④自動車交通需要の調整 ⑤道路環境の改善
期待される低炭素効果	自動車利用を原因とした CO₂排出量の抑制
採用した算定手法	自動車利用を原因とした CO ₂ 排出量の抑制 二酸化炭素削減効果シミュレーション・ツール (国土交通省作成 平成 26 年 2 月試行版)
算定結果	21,000 t-CO₂/年
鉄道の運賃軽減	800 t-CO ₂ /年
自転車走行空間の整備	1,200 t-CO ₂ /年
夜間人口の集約(10%)	400 t-CO ₂ /年
昼間人口の集約(10%)	600 t-CO ₂ /年
環境対応車の導入や代替交通手段の選択など	18,000 t-CO ₂ /年
現在の CO ₂ 排出量(平成 25 年)	108,000 t-CO₂/年
低炭素まちづくりをする場合(平成 35 年)	105,000 t-CO₂/年
低炭素まちづくりをしない場合(平成 35 年)	126,000 t-CO ₂ /年

【算定式の内訳】

算定手法:自動車利用を原因とした CO2排出量の抑制二酸化炭素削減効果シミュレーション・ツール (国土交通省作成 平成26年2月試行版)及び低炭素まちづくり実践ハンドブック 資料編による

- CO₂削減量=人数(人)×平均移動距離(km)÷自動車の平均乗車人員(人/台)
 - ×自動車 1 台・1km あたりの排出量原単位(kg-CO₂/台・km)
 - =15,000 人/日×365 日/年×15km÷1 人/台×0.258kg-CO₂/台·km
 - =21,188,250kg-CO₂/年
 - ≒21,000t-CO₂/年
- 〇平均移動距離(km):市域を考慮し15km(往復で)と設定
- 〇自動車の平均乗車人員(人/台):1人/台
- ○自動車 1 台・1km あたりの排出量原単位(kg-CO₂/台・km):0.258

基本方針3:エネルギー消費量の削減による効果

〇業務部門

表 7-8 業務部門における CO₂削減量 (建物性能の向上)

		入メニュー 業務部門)			⑥エネルギー負荷の軽減(建物性能の向上) (短期目標)								
	期待さ	れる低炭素効果	果			建物の省エネル÷ により, CO₂排出			· - / • -	替更新	断を進		
採用した	采用した算定式 CO ₂ 削減量 t-CO ₂ /年					t-CO₂/棟•年	×	建物数	(棟)	×	設置率		
算定結	果	10,500	t-CO ₂ /年										
建替	昭和 48 年以 前に建築さ れた業務施 設が建替え されると設 定。ZEB [※] を 導入	1,277	t-CO ₂ /年	=	185	t-CO₂/棟•年	×	460	棟	×	1.5%		
新築	計画期間内 の新築数	9,250	t-CO ₂ /年	=	185	t-CO₂/棟・年	×	100	棟	×	50%		
原単位	業務施設 1 棟あたりの CO2 排出量	185t-CO₂/棟•年	:										

※ZEB:ネット・ゼロ・エネルギー・ビル (年間一次エネルギー収支が0となる建物)

【算定式の内訳】

算定手法:低炭素まちづくり実践ハンドブック 資料編などによる

- CO₂削減量=業務施設1棟あたりのCO₂排出量(t-CO₂/棟・年)×建替建物数(棟)×設置率(%)
 - +業務施設1棟あたりのCO,排出量(t-CO,/棟・年)×新築建物数(棟)×設置率(%)
 - =185t-CO₂/棟·年×460棟×0.015+185t-CO₂/棟·年×100棟×0.5
 - =1,276.5t-CO₂/年+9,250t-CO₂/年
 - =10,526.5 t-CO₂/年=10,500 t-CO₂/年
- 〇業務施設の1棟あたりのCO2排出量の算定値
 - : 業務施設の年間CO₂排出量(t-CO₂/年)÷業務施設数(棟)。業務施設の建物数は、守谷市課税台帳による。
- 〇建替建物数(棟):昭和48年以前に建築された業務施設の建物数。建物数は、守谷市課税台帳による。建替建物にはZEBを導入。
- 〇新築建物数(棟):計画期間内の新築数をこれまでの実績(トレンド)から推計。
- 〇設置率(%):昭和48年以前に建てられた現存建物数÷計画策定時の建物数。
- OZEB:業務施設1棟あたりのCO₂排出量(t-CO₂/棟・年)分をZEB相当と設定。

表 7-9 業務部門における CO₂削減量 (太陽光発電)

導力	レメニュー	⑦未和	川用	- 再生可]能	エネ	ルギ	<u>-</u> の	利用	刑(太)	易光	発電)		
(業	務部門)					(短其	明目	標)						
期待され	る低炭素効果	業務部門の事業所 排出量を削減する		物に未利	用・	再生同	可能:	エネル	ギー	-を利用	する	ことによ	り, C	O ₂
採用した	算定式	CO ₂ 削減量 t- CO ₂ /年	=	а	×	b	×	С	×	d	×	е	×	f
算定結果	₹	2,800 t- CO ₂ /年												
新築	集約駐車場 (敷地 1.2ha)	576.7	=	7,200	×		×		×		×			100%
既存	アワーズもりや などの民間商業 施設	737.0	=	184,023	×	80%	×	0.2	×	1,079	×	0.000464		5%
	計	1,313.70												
既存	公共公益施設													
成1 1	計	1,561.70	=	19,496	×	80%	×	0.2	×	1,079	×	0.000464	×	100%
	建築面積∶a	m²												
	設置面積率:b	80%												
原単位	単位容量∶c	0.2kW/m²												
W-+- 17	単位発電量:d	1,079kWh/kW•年												
	排出係数∶e	0.000464t- CO ₂ /kWh		-						_		-		
	導入率:f	%												

【算定式の内訳】

算定手法:低炭素まちづくり実践ハンドブック 資料編などによる

CO₂削減量=建築面積(m²)×設置率(%)×単位容量(kW/m²)×単位発電量(kWh/kW·年)

×排出係数(t-CO₂/kWh)×導入率(%)

- =7,200 m² × 0.8×0.2 kW/m² × 1,079 kWh/kW 年 × 0.000464 t CO₂/kWh × 1
 - +184,023m 2 × 0.8 × 0.2kW/m 2 × 1,079kWh/kW 2 年 × 0.000464t-CO $_{2}$ /kWh × 0.05
 - $+19,496 \times 0.8 \times 0.2$ kW/m² × 1,079kWh/kW 年 × 0.000464t-CO₂/kWh × 1
- =576.7+737+1,561.7=2,875.4=2,800t-CO₂/年
- 〇建築面積(m²):現在の業務施設の建物面積。建築面積は、守谷市課税台帳による。
- ○設置率(%):設定値(屋上の通路, その他設備等を考慮して割合を設定)。
- 〇単位容量(kW/m²):電気メーカー公表値。
- ○単位発電量(kWh/年):JISの計算式により算出。
- 〇排出係数(t-CO₂/kWh):環境省公表值。
- ○導入率:新築は100%, 既存は補助金実績値より設定。

表 7-10 業務部門における CO2削減量(設備更新)

2	導入メニュー	(⑦未利用・再生可能エネルギーの利用(設備更新)										
	(業務部門)				(短其	月目札	票)						
期待	される低炭素効果		建物の設備 出量を削減す		より、未利用	・再生	可能工	ネルキ	デーの利用	を進め	りることによ		
採用し	た算定式	CO₂削減量	t- CO ₂ /年	=	а	×	b	×	С	×	d		
算定約		11,300	t- CO ₂ /年										
昭和:	59~平成 15 年に建築								491.9		0.000464		
	こ業務施設が設備更 いると設定。	11,399.7	t- CO ₂ /年	=	211,451	×	20%	×	0.2186	×	0.0693		
									0.5255		0.0498		
	延床面積∶a	m ²											
	省エネ率:b	20%											
	原単位(電気):c1	491.9kWh/mੈ	·年										
原	原単位(石油):c2	0.2186GJ/m²	·年										
原単位	原単位(ガス):c3	0.5255GJ/m²	· 年										
	排出係数(電気):d1	0.000464t-C0	O ₂ /kWh										
	排出係数(石油):d2	0.0693t-CO ₂ /	/GJ										
	排出係数(ガス):d3	0.0498t-CO ₂ /	⁄GJ										

算定手法:低炭素まちづくり実践ハンドブック 資料編などによる

CO₂削減量=延床面積(m)×省エネ率(%)×排出量原単位(kWh/m・年やGJ/m・年)

×排出係数(t-CO₂/kWhやt-CO₂/GJ)

=211,451 $\text{m}^2 \times 0.2 \times (491.9 \text{kWh/m}^2 \cdot \text{ft} \times 0.000464 \text{t-CO}_2/\text{kWh}$

+0.2186GJ/m*·年×0.0693t-CO₂/GJ+0.5255GJ/m*·年×0.0498t-CO₂/GJ)

 $=211.451 \times 0.2 \times (0.2282416 + 0.151490 + 0.0261699)$

=211,451×0.2×0.2695605=11,399.76=11,300t-CO₂/年

〇延床面積(m):昭和59年~平成15年に建築された業務施設の延床面積。延床面積は、守谷市課税 台帳による。

○省エネ率(%):既存店舗の事例より設定

〇原単位(電気:kWh/mf年, 石油, ガス:GJ/mf年):環境省公表値

〇排出係数(電気, 石油, ガス):環境省公表値

〇家庭部門

表 7-11 家庭部門における CO₂削減量(低炭素住宅)

	スメニュー 家庭部門)	⑥エネルギー負荷の軽減(建物性能の向上) (短期目標)											
期待され	る低炭素効果	戸建住宅に未	₹利用・再生	可能	エネル=	ギーを利用する	ことに	より, CO ₂	排出量を	削減	する。		
採用した	算定式	CO₂削減量	t- CO₂/年	=	原単位	t- CO₂/世帯•年	×	世帯数	(世帯)	×	設置率		
算定結果		7,000	t- CO ₂ /年										
松並地区													
新築	ZEH	3,500	t- CO ₂ /年		3.5	t- CO₂/世帯·年	×	1,000	世帯	×	100%		
その他の	市街化区域												
新築	松並地区以外での新築 にZEHを導入	2,961	t- CO ₂ /年		3.5	t- CO₂/世帯・年	×	1,692	世帯	×	50%		
建替	昭和48年以前に建築された住宅が建替えされると設定。ZEHを導入	578	t- CO ₂ /年		3.5	t- CO ₂ /世帯・年	×	330	世帯	×	50%		
原単位	ZEH	3.5t- CO₂/世帯・	年		-			-	-				

※ Z E H: ネット・ゼロ・エネルギー・ハウス (年間一次エネルギー収支が 0 となる住宅)。低炭素住宅で太陽光発電 (PV) なども設置。

【算定式の内訳】

算定手法:低炭素まちづくり実践ハンドブック 資料編などによる

CO₂削減量=住宅1世帯あたりのCO₂排出量(t-CO₂/世帯・年)×世帯数(世帯)×設置率(%)

=3.5t-CO₂/世帯·年×1,000世帯戸×1+3.5t-CO₂/世帯·年×1,692世帯戸×0.5

+3.5t-CO₂/世帯·年×330世帯戸×0.5

=3,500t-CO₂/年+2,961 t-CO₂/年+578 t-CO₂/年

=7,039 t-CO₂/年=7,000t-CO₂/年

- 〇住宅1世帯たりのCO₂排出量の算定値:住宅部門の年間CO₂排出量(t-CO₂/年)÷世帯数(世帯)
- 〇新築建物数(世帯):松並地区で1,000世帯と設定
- ○新築建物数(世帯):計画期間内の新築数をこれまでの実績(トレンド)から推計
- 〇建替建物数(世帯):昭和48年以前に建築された住宅数。住宅数は、守谷市課税台帳による。

建替建物にはZEHを導入。

- 〇設置率(%):設定
- OZEH:住宅1世帯あたりのCO₂排出量(t-CO₂/世帯・年)分をZEH相当と設定

表 7-12 家庭部門における CO₂削減量 (太陽光発電)

	スメニュー 定部門)		⑦未利用・再生可能エネルギーの利用 (短期目標)										
(3)	NE HPI J/				`								
期待される低炭素効果 戸建住宅に未利用・再生可能エネルギーを利用することにより、CO2排出量を削減する。													
採用した算	定式	CO₂削減量	t- CO ₂ /年	=	原単位	t− CO₂/世帯・ 年	×	世帯数	(世帯)	×	導入率		
算定結果		1,400	t- CO ₂ /年										
既築	平成 35 年時点の世 帯数の3%に太陽光 発電(PV)を導入す ると設定。	1,474	t- CO ₂ /年		2	t− CO₂/世帯・ 年	×	24,566	世帯	×	3%		
原単位	太陽光発電(PV)	2t- CO2/世帯	2t- CO2/世帯·年										

算定手法:低炭素まちづくり実践ハンドブック 資料編などによる

CO₂削減量=住宅1世帯あたりの太陽光発電(PV)のCO₂削減量(t-CO₂/世帯・年)

×世帯数(世帯)×設置率(%)

=2t-CO₂/世帯·年×24,566×3%

=1,473.96 **=** 1,400

- 〇1世帯戸あたりの太陽光発電(PV)のCO2削減量
 - :1棟あたりの太陽光発電(PV)の単位容量(kW)×単位発電量(kWh/kW・年)
 - ×排出係数(t-CO2/kWh)
 - $=4kW \times 1,079kWh/kW$ •年 $\times 0.000464t-CO_2/kWh = 2.0t-CO_2/$ 年
- 〇単位容量:電気メーカー公表値
- 〇単位発電量:JISの計算式により算出
- 〇排出係数:環境省公表値
- 〇導入率: 平成35年時点の世帯数の3%に太陽光発電(PV)を導入すると設定。導入率は補助金実 績値より設定。

基本方針4:緑豊かなまちづくりの推進による効果

〇緑分野

表 7-13 緑分野における CO2削減量(緑豊かなまちづくりの推進)

i	導入メニュー (緑分野)		⑧緑の管理・育成 (短期目標)									
期待され	しる低炭素効果	計画区域におけ	ける緑地を保	全す	ることにより, (CO₂を固定・吸収	する	0				
採用した	算定式	CO₂吸収量	t- CO ₂ /年	=	原単位		×	面積				
算定結果		17	t- CO ₂ /年	=				11.	2 ha			
対象地	生産緑地	7.238	t- CO ₂ /年	=	1.54	t- CO₂/ha•年	×	4.	7 ha			
刈水地	保存緑地	10.01	t- CO ₂ /年	Ш	1.54	t− CO ₂ /ha•年	×	6.	5 ha			
原単位	都市緑地法又は条例に よる緑地保全対策	1.54t− CO2/ha•±	Ę.									

【算定式の内訳】

算定手法:低炭素まちづくり実践ハンドブック 資料編による

CO₂吸収量=吸収係数(t-CO₂/ha·年)×面積(ha)

 $=1.54t-CO_2/ha$ 年 \times 4.7ha + 1.54 $t-CO_2/ha$ 年 \times 6.5ha

=7.238t-CO₂/年+10.01t-CO₂/年

=17.248t-CO₂/年=17t-CO₂/年

○原単位:低炭素まちづくり実践ハンドブック 資料編。間伐更新や補植などの管理が行われていない場合。

表 7-14 緑分野における CO₂削減量 (緑化の推進)

_	入メニュー (緑分野)					この推進 明目標)				
期待され	れる低炭素効果	計画区域におけ	ける緑化等σ	推進	により, CO ₂	を固定・吸収する。				
採用した	算定手法	CO₂吸収量	t- CO ₂ /年	=	原単位		×	植栽面積		ha
算定結果	Ę	2,323	t- CO ₂ /年					14	7.7	ha
	都市公園	155.727	t- CO ₂ /年	=	15.73	t- CO₂/ha•年	×	,	9.9	ha
対象地	公共施設緑地	604.032	t- CO ₂ /年	=	15.73	t− CO₂/ha•年	×	38	8.4	ha
	民間施設緑地	1,563.562	t- CO₂/ha•年	×	99	9.4	ha			
原単位 15.73t− CO₂/ha•年										

算定手法:低炭素まちづくり実践ハンドブック 資料編による

CO₂吸収量=吸収係数(t-CO₂/ha·年)×植栽面積(ha)

 $=15.73t-CO_2/ha$ ·年× $9.9ha+15.73t-CO_2/ha$ ·年×38.4ha

+15.73t-CO₂/ha•年×99.4ha

=155.727t- CO_2 /年+604.032t- CO_2 /年+1,563.562t- CO_2 /年

=2,323.321t-CO₂/年=2,323t-CO₂/年

〇原単位:低炭素まちづくり実践ハンドブック 資料編。単位緑化面積200本/ha以上のみどりの場合。

(2) 中期計画における本市取り組み効果

基本方針2:環境にやさしい移動手段の利用促進による効果 〇運輸部門

表 7-15 運輸部門における CO₂削減量

導入メニュー(運輸部門)	③公共交通の利用促進 ④自動車交通需要の調整 ⑤道路環境の改善
期待される低炭素効果	自動車利用を原因とした CO₂排出量の抑制
採用した算定手法	短期目標の CO₂ 排出量から 15%削減
算定結果	16,000 t-CO ₂ /年
低炭素まちづくりをする場合(平成 45 年)	89,000 t-CO ₂ /年
短期目標(平成 35 年)	105,000 t-CO ₂ /年

【算定式の内訳】

算定手法:設定

CO₂削減量=105,000×(1-0.15)

=89,250

≒89,000

○低炭素まちづくりをしない場合(平成 45 年):低炭素まちづくりをしない場合(平成 35 年)の CO₂排出 量のまま推移すると設定。

〇低炭素まちづくりをする場合(平成 45 年) : 茨城県地球温暖化対策実行計画(平成 23 年 4 月)の

目標削減率(1990 年に対し、2020 年で 8.5~15.2%削

減)を参考に、短期目標(平成35年)のCO₂排出量から

15%削減すると設定。

基本方針3:エネルギー消費量の削減による効果

〇業務部門

表 7-16 業務部門における CO₂削減量(建物性能の向上)

	算入メニュー 業務部門)	⑥エネルギー負荷の軽減(建物性能の向上) (中期目標)									
期待され	る低炭素効果				業務部門の事業用建物に利用することにより、CO2				ルギーを		
採用した算	草定手法	CO ₂ 削減量	CO ₂ 削減量 t-CO ₂ /年 = 原単位 t-CO ₂ /棟·年 建物数(棟)						設置率		
算定結果		15,200	t- CO ₂ /年								
建替	昭和49~58年に建築された業務施設が建替え されると設定。ZEBを導入	5,957	t- CO ₂ /年	II	185	×	460	×	7%		
新築	計画期間内の新築数	9,250	Ш	185	×	100	×	50%			
原単位	ZEB	185t- CO₂/棟	·年								

【算定式の内訳】

算定手法:低炭素まちづくり実践ハンドブック 資料編などによる

CO₂削減量=業務施設1棟あたりのCO₂排出量(t-CO₂/棟・年)×建替建物数(棟)×設置率(%)

+業務施設1棟あたりのCO₂排出量(t-CO₂/棟・年)×新築建物数(棟)×設置率(%)

=185t-CO₂/棟·年×460棟×0.07+185t-CO₂/棟·年×100棟×0.5

=5,957t-CO₂/年+9,250t-CO₂/年

=15,207 t-CO₂/年≒15,200 t-CO₂/年

〇業務施設の1棟あたりのCO₂排出量の算定値:業務施設の年間CO₂排出量(t-CO₂/年)

÷業務施設数(棟)

○建替建物数(棟):昭和49年~58年に建築された業務施設の建物数。建物数は、守谷市課税台帳によ

る。建替建物にはZEBを導入。

〇新築建物数(棟):計画期間内の新築数をこれまでの実績(トレンド)から推計。

〇設置率(%):昭和49年から58年に建てられた現存建物数÷計画策定時の建物数。

OZEB:業務施設1棟あたりのCO₂排出量(t-CO₂/棟・年)分をZEB相当と設定。

表 7-17 業務部門における CO2削減量(設備更新)

2	導入メニュー (業務部門)	⑦未利用・再生可能エネルギーの利用(設備更新) (中期目標)											
期待される低炭素効果		業務部門の建物の省エネルギー化を進める事で、CO ₂ 排出量を削減する。											
採用し	た算定手法	CO ₂ 削減量	t- CO ₂ /年	=	а	×	b	×	С	×	d		
算定結果		8,200	t- CO ₂ /年										
平成 10	6~25 年に建築された業								491.9		0.000464		
務施設	が設備更新されると設	8,242	t− CO ₂ /年	=	152,882	×	20%	×	0.2186	×	0.0693		
定。									0.5255		0.0498		
	延床面積:a	m [*]											
	省エネ率∶b	20%	20%										
	原単位(電気):c1	491.9kWh/m²	491.9kWh/㎡·年										
原単位	原単位(石油):c2	0.2186GJ/m²	0.2186GJ/㎡·年										
位	原単位(ガス):c3	0.5255GJ/m²	0.5255GJ/㎡·年										
	排出係数(電気):d1	0.000464t- C	0.000464t- CO ₂ /kWh										
	排出係数(石油):d2	0.0693t- CO ₂	₂ /GJ										
	排出係数(ガス):d3	0.0498t- CO ₂	0.0498t- CO ₂ /GJ										

【算定式】

算定手法:低炭素まちづくり実践ハンドブック 資料編などによる

CO。削減量=延床面積(m)×省エネ率(%)×排出量原単位(kWh/m・年やGJ/m・年)

×排出係数(t-CO₂/kWhやt-CO₂/GJ)

=152,882 $\text{m}^2 \times 0.2 \times (491.9 \text{kWh/m}^{\bullet} \cdot \text{年} \times 0.000464 \text{t-CO}_2/\text{kWh}$

+0.2186GJ/m年×0.0693t- $CO_2/GJ+0.5255GJ/m$ 年×0.0498t- CO_2/GJ)

 $=152,882 \times 0.2 \times (0.2282416 + 0.01514898 + 0.0261699)$

=152,882×0.2×0.26956049=8,242.1=8,200t-CO₂/年

〇延床面積(m): 平成16~25年に建築された業務施設の延べ床面積。延べ床面積は,守谷市課税

台帳による。

〇省エネ率(%):既存店舗の事例より設定

〇原単位(電気:kWh/mdf, 石油, ガス:GJ/mdf):環境省公表値

〇排出係数(電気, 石油, ガス):環境省公表値

〇家庭部門

表 7-18 家庭部門における CO₂削減量(低炭素住宅)

	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	⑥エネルギー負荷の軽減(建物性能の向上) (中期目標)									
期待される低炭素効果						門の戸建住宅に未 により,CO₂排出i				ギー	を利用
採用した算定手法		CO ₂ 削減量	t- CO ₂ /年	=	原単位	t- CO₂/世帯·年	×	世帯数	(世帯)	×	設置率
算定結果		5,100	t- CO ₂ /年								
新築	松並地区以外での 新築にZEHを導入	1,834	t- CO ₂ /年		3.5	t- CO₂/世帯•年	×	1,048	世帯	×	50%
建替	昭和 49~58 年に 建築された住宅が 建替えされると設 定。ZEH を導入	3,308	t− CO ₂ /年		3.5	t- CO ₂ /世帯・年	×	1,890	世帯	×	50%
原単位	ZEH	3.5t- CO ₂ /世	:帯·年								

【算定式の内訳】

算定手法:低炭素まちづくり実践ハンドブック 資料編などによる

CO₂削減量=住宅1世帯あたりのCO₂排出量(t-CO₂/世帯・年)×世帯数(世帯)×設置率(%)

=3.5t-CO₂/世帯·年×1,048世帯戸×0.5+3.5t-CO₂/世帯·年×1,890世帯戸×0.5

=1,834t-CO₂/年+3,308 t-CO₂/年

=5,142 t-CO₂/年≒5,100 t-CO₂/年

〇住宅1世帯たりのCO₂排出量の算定値:住宅部門の年間CO₂排出量(t-CO₂/年)÷世帯数(世帯)

○新築建物数(世帯):計画期間内の新築数をこれまでの実績(トレンド)から推計

〇建替建物数(世帯):昭和49~58年に建築された住宅数。住宅数は、守谷市課税台帳による。

建替建物にはZEHを導入

〇設置率(%):設定

OZEH:住宅1世帯あたりのCO₂排出量(t-CO₂/世帯・年)分をZEH相当と設定

表 7-19 家庭部門における CO₂削減量 (太陽光発電)

導入メニュー ⑦オ (家庭部門)					利用・再生可能エネルギーの利用 (中期目標)							
期待される低炭素効果					家庭部門の戸建住宅に未利用・再生可能エネルギーを利用することにより、 CO_2 排出量を削減する。							
採用した算定手法		CO₂削減量	t- CO ₂ /年	=	原単位	t- CO₂/世帯•年	×	世帯数	(世帯)	×	設置率	
算定結果		2,800	t- CO ₂ /年									
既築	平成 35 年時点の 世帯数の 5%に 太陽光発電(PV) を導入すると設 定。	2,826	t− CO ₂ /年		2	t− CO₂/世帯・年	×	28,258	世帯	×	5%	
原単位	太陽光発電(PV)	2t- CO ₂ /世	帯·年									

算定手法:低炭素まちづくり実践ハンドブック 資料編などによる

CO₂削減量=住宅1世帯あたりの太陽光発電(PV)のCO₂削減量(t-CO₂/世帯・年)

×世帯数(世帯)×設置率(%)

=2t-CO₂/世帯·年×28,258×5%

=2,825.8 \= 2,800

〇1世帯戸あたりの太陽光発電(PV)のCO。削減量

:1棟あたりの太陽光発電(PV)の単位容量(kW)×単位発電量(kWh/kW・年)

×排出係数(t-CO₂/kWh)

 $=4kW \times 1,079kWh/kW$ •年 $\times 0.000464t-CO_2/kWh=2.0t-CO_2/年$

〇単位容量:電気メーカー公表値。

〇単位発電量: JISの計算式により算出。

〇排出係数:環境省公表値。

〇導入率: 平成35年時点の世帯数の5%に太陽光発電(PV)を導入すると設定。

基本方針4:緑豊かなまちづくりの推進による効果

表 7-20 緑分野における CO₂削減量 (緑地保全)

	導入メニュー (緑分野)	⑧緑の管理・育成 (中期目標)									
期待される低炭素効果		計画区域における緑地を保全することにより CO2を吸収									
採用した算定手法		CO ₂ 吸収量	t- CO ₂ /年	=	原単位		×	面積			
算定結	果	55	t− CO ₂ /年					11.2	ha		
対象地	生産緑地	23.265	t- CO ₂ /年	=	4.95	t− CO ₂ /ha•年	×	4.7	ha		
地	保存緑地	32.175	t- CO ₂ /年	=	4.95	t− CO₂/ha•年	×	6.5	ha		
原	間伐更新や補植栽実施	4.95t- CO ₂ /ha	·年								
原単位	都市緑地法又は条例によ る緑地保全対策	1.54t- CO ₂ /ha	·年								

【算定式の内訳】

算定手法:低炭素まちづくり実践ハンドブック 資料編による

CO2吸収量=吸収係数(t-CO2/ha·年)×面積(ha)

 $=4.95t-CO_2/ha$ •年× $4.7ha+4.95t-CO_2/ha$ •年×6.5ha

=23.265t-CO₂/年+32.175t-CO₂/年

=55.44t-CO₂/年=55t-CO₂/年

〇原単位:低炭素まちづくり実践ハンドブック 資料編。間伐更新や補植などの管理が行われている場合。

表 7-21 緑分野における CO2削減量 (緑化の推進)

ä	導入メニュー (緑分野)	⑨緑化の推進(中期目標)										
期待される低炭素効果		計画区域における緑化等の推進により CO2を固定・吸収										
算定結果		7,261	t- CO ₂ /年					384.8	ha			
	都市公園	155.727	t- CO ₂ /年	=	15.73	t− CO₂/ha•年	×	9.9	ha			
	公共施設緑地	1,201.772	t- CO ₂ /年	=	15.73	t− CO₂/ha•年	×	76.4	ha			
	民間施設緑地	4,223.505	t- CO ₂ /年	=	15.73	t− CO₂/ha•年	×	268.5	ha			
対象地	集約拠点地区の民間 敷地における緑化の推 進	392.000	t− CO₂/年	=	56	t− CO₂/ha•年	×	7	ha			
	集約拠点地区の民間 敷地における屋上緑化	1,288.000	t− CO₂/年	=	56	t− CO ₂ /ha•年	×	23	ha			
採用した	採用した算定手法		t- CO ₂ /年	=	原単位		×	高木				
原単位		15.73t- CO ₂ /ha	a•年									
採用した	採用した算定手法		t- CO ₂ /年	=	原単位		×	屋上緑化面積	ha			
原単位		56t- CO ₂ /ha	·年		-			_				

算定手法:低炭素まちづくり実践ハンドブック 資料編による

CO₂吸収量=吸収係数(t-CO₂/ha·年)×植栽面積(ha)

 $=15.73t-CO_2/ha$ ・年× $9.9ha+15.73t-CO_2/ha$ ・年×76.4ha

+15.73t-CO₂/ha•年×268.5ha

+15.73t-CO₂/ha 年×7ha+15.73t-CO₂/ha 年×23ha

=155.727t-CO₂/年+1,201.772t-CO₂/年+4,223.505t-CO₂/年

+392t-CO₂/年+1,288 t-CO₂/年

=7,261.049t-CO₂/年=7,261t-CO₂/年

〇原単位:低炭素まちづくり実践ハンドブック 資料編。単位緑化面積200本/ha以上のみどりの場合。